M10.1 (15 points) Let's further explore the concept of instability via the configuration considered in lecture of the rod of length L pinned with a torsional spring of stiffness k_{T} and loads in each of the two directions. This is represented in the accompanying figure:

We extend the model in this case from the rod being infinitely rigid / stiff along its length to it being able to deform based on the basic rod model. This can be considered as being a linear spring with a stiffness constant proportional to the properties of the rod of the area (A), the modulus (E), and the length (L), resulting in the expression: $\mathrm{k}_{\mathrm{L}}=\mathrm{EA} / \mathrm{L}$. The length of the rod will thus change as it is loaded along its length. (NOTE that buckling of the rod as a column is not considered here).
(a) Determine the basic expression governing the rotational angle, \square, of the configuration as a function of the two applied loads and the parameters as defined.
(b) Determine an expression for the critical value of the load applied along the length of the rod, $\mathrm{P}_{2_{\mathrm{cr}}}$, defined as where instability occurs.
(c) Plot this critical value of the load as a function of the value of the rod stiffness, EA, normalized by the ratio of the torsional spring stiffness to the rod length: $n=E A /\left(k_{T} / L\right)$. Explain the behavior that is observed.

M10.2 (15 points) A column of length L is clamped at one end and has no support at the other end. That end is loaded via a pressure of magnitude p and the overall load thus changes with and is proportional to the overall area of the crosssection. The column is made of a material with a modulus of E.

Different cross-sections are to be considered for the column. For each, determine the expressions to find the buckling load and the buckling mode.
(a) Cross-section A is square with side lengths equal to a.

(b) Cross-section B is circular with a diameter equal to a.

Cross-Section B

a

